Multiplication Modules and Tensor Product
نویسنده
چکیده
All rings are commutative with identity and all modules are unital. The tensor product of projective (resp. flat, multiplication) modules is a projective (resp. flat, multiplication) module but not conversely. In this paper we give some conditions under which the converse is true. We also give necessary and sufficient conditions for the tensor product of faithful multiplication Dedekind (resp. Prüfer, finitely cogenerated, uniform) modules to be a faithful multiplication Dedekind (resp. Prüfer, finitely cogenerated, uniform) module. Necessary and sufficient conditions for the tensor product of pure (resp. invertible, large, small, join principal) submodules of multiplication modules to be a pure (resp. invertible, large, small, join principal) submodule are also considered. MSC 2000: 13C13, 13A15, 15A69
منابع مشابه
Bessel multipliers on the tensor product of Hilbert $C^ast-$ modules
In this paper, we first show that the tensor product of a finite number of standard g-frames (resp. fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of Hilbert $C^ast-$ modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel multipliers and Bessel fusion multipliers in Hilbert $C^ast-$modules. Moreover, we obtain so...
متن کاملFuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملThe non-abelian tensor product of normal crossed submodules of groups
In this article, the notions of non-abelian tensor and exterior products of two normal crossed submodules of a given crossed module of groups are introduced and some of their basic properties are established. In particular, we investigate some common properties between normal crossed modules and their tensor products, and present some bounds on the nilpotency class and solvability length of the...
متن کاملSTRONGLY DUO AND CO-MULTIPLICATION MODULES
Let R be a commutative ring. An R-module M is called co-multiplication provided that foreach submodule N of M there exists an ideal I of R such that N = (0 : I). In this paper weshow that co-multiplication modules are a generalization of strongly duo modules. Uniserialmodules of finite length and hence valuation Artinian rings are some distinguished classes ofco-multiplication rings. In additio...
متن کاملOn the Tensor Products of Modules for Dihedral 2-Groups
The only groups for which all indecomposable modules are ‘knowable’ are those with cyclic, dihedral, semidihedral, and quaternion Sylow p-subgroups. The structure of the Green ring for groups with cyclic and V4 Sylow p-subgroups are known, but no others have been determined. Of the remaining groups, the dihedral 2-groups have the simplest module category but yet the tensor products of any two i...
متن کامل